FENÔMENOS DE TRANSPORTE CHEMTECH

MÓDULO I Hidrodinâmica e Térmica - 15 horas -

AULA 1

1. Formulação Integral das Equações de Transporte.

2. Formulação Diferencial das Equações de Transporte.

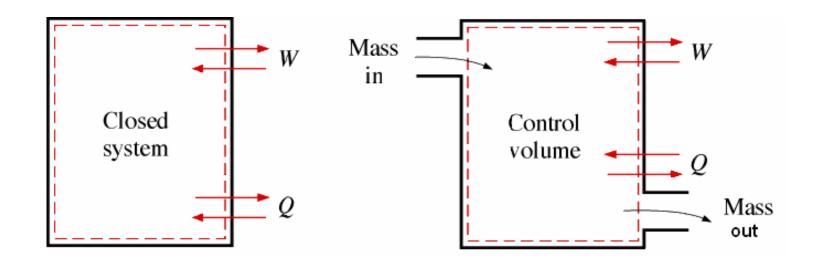
3. Equações Constitutivas.

Parte I

Formulação Integral das Equações de Transporte

As Leis Físicas e o Conceito de Sistema

- Todas as leis físicas foram desenvolvidas para sistemas: um conjunto de partículas (massa) com identidade fixa.
- Não há fluxo de massa na fronteira de um sistema, mas pode haver forças (pressão, tensão) e energia na forma de calor ou trabalho cruzando sua fronteira.



Propriedades de Sistemas

 Um sistema pode ser caracterizado pela sua Massa, Quantidade de Movimento Linear, Energia, Entropia, entre outros parâmetros.

Variação da Massa de um sistema é, por definição, nula:

$$\frac{|\mathbf{DM}|}{|\mathbf{Dt}|} = 0$$

Variação da Quant. de Movimento de um sistema - 2ª lei de Newton

$$\frac{\mathbf{D}(\mathbf{M}\vec{\mathbf{V}})}{\mathbf{D}t}\bigg|_{cic} = \sum \vec{\mathbf{F}}_{ext}$$

Variação da Energia de um sistema - 1^a Lei da Termodinâmica

$$\left. \frac{\mathbf{D}(\mathbf{E})}{\mathbf{D}\mathbf{t}} \right|_{\mathbf{sis}} = \dot{\mathbf{Q}} - \dot{\mathbf{W}}$$

Variação da Entropia de um sistema - 2^a Lei da Termodinâmica

$$\left. \frac{\mathbf{D(S)}}{\mathbf{Dt}} \right|_{\mathbf{sis}} = \frac{\dot{\mathbf{Q}}}{\mathbf{T}} + \mathbf{P_S}$$

Forma Genérica

 Se considerarmos B uma propriedade extensiva de um sistema, sua variação pode ser expressa genericamente por:

$$\left. \frac{\mathbf{DB}}{\mathbf{Dt}} \right|_{\mathbf{sis}} = \mathbf{S}$$

 Onde S representa um termo fonte adequado para o fenômeno que B representa: massa, quantidade de movimento, energia etc.

Propriedade Não-Uniformes

- A propriedade genérica B (massa, q. movimento, energia etc) do sistema, em geral, não é uniforme no espaço.
- Ela pode ser convenientemente avaliada definindo-se uma propriedade intensiva β como:

$$\beta = \lim_{\Delta m \to 0} \left(\frac{\Delta B}{\Delta m} \right)$$

 De tal forma que a taxa de variação de B no sistema pode ser determinada por:

$$\left| \frac{\mathbf{D}}{\mathbf{D}\mathbf{t}} \right| \int_{\mathbf{Sis}} \boldsymbol{\rho} \cdot \boldsymbol{\beta} \cdot \mathbf{d} \, \forall \, \, \, \, \, \, = \mathbf{S}$$

Propriedades de Sistemas

 As equações que descrevem as variações das propriedades nos sistemas são postulados ou leis da física.

 Para constituirmos estas equações propriamente devemos especificar a natureza do termos fonte.

Equação da Massa para um Sistema

• A equação da Massa é obtida fazendo-se β =1,

$$\frac{\mathbf{D}}{\mathbf{D}\mathbf{t}} \left[\int_{\mathbf{sis}} \boldsymbol{\rho} \cdot \mathbf{d} \, \forall \right] = \mathbf{0}$$

 Note que não há termo fonte de massa, pressupõe-se na ausência de efeitos nucleares.

Equação da Q. Movimento para um Sistema

 A equação da Q. Movimento é obtida fazendo-se β = V,

$$\frac{\mathbf{D}}{\mathbf{D}t} \left[\int_{\mathbf{sis}} \rho \vec{\mathbf{V}} d \forall \right] = \underbrace{\int_{\mathbf{A}} \mathbf{T} \cdot \mathbf{n} d\mathbf{A} + \int_{\mathbf{V}} \rho \vec{\mathbf{g}} d \forall}_{\sum \mathbf{F}_{ext}}$$

 As forças externas são dividas em forças que agem na <u>fronteira do sistema</u>, Tensões T (natureza tensorial), e forças de campo que agem no <u>volume do sistema</u>.

Equação da Energia para um Sistema

 A equação da Energia é obtida fazendo-se β =e, não especificada neste estágio,

$$\frac{\mathbf{D}}{\mathbf{D}\mathbf{t}} \left[\int_{\mathbf{sis}} \rho \mathbf{e} \mathbf{d} \forall \right] = + \left[-\int_{\mathbf{A}} \vec{\mathbf{q}}_{\mathbf{k}}'' \cdot \vec{\mathbf{n}} d\mathbf{A} \right] - \left[-\int_{\mathbf{A}} \vec{\mathbf{n}} \cdot \left(\mathbf{T} \cdot \vec{\mathbf{V}} \right) d\mathbf{A} \right] + \int_{\mathbf{V}} \mathbf{q}''' \cdot d\mathbf{V}$$

 Q e W só existem na fronteira do sistema, o calor é exclusivamente devido a condução térmica e o trabalho é aquele realizado pelas tensões que atuam na fronteira.

 O último termo refere-se a geração volumétrica de energia no interior do volume (reação química, dissipação efeito ioule, etc)

2ª Lei para um Sistema

• A 2^a Lei é obtida fazendo-se β = s,

$$\frac{\mathbf{D}}{\mathbf{D}t} \left[\int_{\mathbf{sis}} \rho \mathbf{s} d\mathbf{\nabla} \right] = -\int_{\mathbf{A}} \left(\frac{\vec{\mathbf{q}}_{\mathbf{k}}''}{\mathbf{T}} \right) \cdot \vec{\mathbf{n}} d\mathbf{A} + \int_{\mathbf{\nabla}} \left(\frac{\mathbf{q}'''}{\mathbf{T}} \right) \cdot d\mathbf{\nabla} + \mathbf{P}\mathbf{s}$$

- O primeiro e segundo termo referem-se a produção ou destruição de s devido a transferência de calor na fronteira e devido a geração de energia internamente ao volume.
- O último termo refere-se a produção de entropia devido as irreversibilidades do sistema, Ps ≥0.

Equações de Transporte ou Conservação?

- Os livros textos frequentemente denominam estas propriedades dos sistemas por <u>Equações de</u> <u>Transporte</u> ou <u>Equações de Conservação</u>.
- A primeira denominação sub-entende como uma propriedade específica é transportada (convecção e difusão) pelo campo.
- O termo conservação é igualmente aplicado porque o lado direito da equação deve ser igual ao seu lado esquerdo, isto é, o transporte deve ser igual ao termos fonte associados a produção ou destruição da propriedade!

Aplicação do Conceito de Sistema

- Os postulados físicos para sistemas são aplicados com sucesso para partículas e corpos rígidos.
- No entanto encontra-se dificuldade para aplicálos em corpos que se deformam continuamente (FLUIDOS)!
- Veja se você conseguiria identificar, em qualquer instante de tempo, todas as partículas de fluido que compõe o sistema ao entrar em um reator com agitação, transferência de calor e trabalho:

Instante: $t_0 + \Delta t$

Sistema x Volume de Controle

- Para corpos que se deformam continuamente(gases e líquidos) é difícil realizar uma análise seguindo-se o sistema!
- É muito mais simples se ater a uma região no espaço (Volume de Controle) onde massa pode cruzar sua fronteira.
- O Teorema de Transporte de Reynolds (TTR) permite que se faça uma análise de um Sistema a partir do conceito de Volume de Controle!

O Volume de Controle

- O Volume de Controle V.C. é uma região do espaço onde se deseja realizar a análise.
- O Volume de Controle pode ser estacionário ou móvel no espaço; fixo ou deformável ou qualquer outra combinação;
- Ele delimita uma região do espaço onde massa, força e energia podem cruzar a fronteira.
- A sua fronteira com o meio externa é delimitada pela Superfície de Controle, S.C.

i eorema de Transporte de Reynolds

 Ele descreve a variação da propriedade do sistema em termos de propriedades medidas no Volume de Controle.

$$\frac{\mathbf{D}}{\mathbf{D}t} \int_{\mathbf{sis}} \rho \beta \cdot \mathbf{d} \forall \equiv \frac{\mathbf{d}}{\mathbf{d}t} \int_{\mathbf{VC}} \beta \rho d\mathbf{V} + \int_{\mathbf{SC}} \beta \rho \left(\vec{\mathbf{n}} \cdot \vec{\mathbf{V}}_r \right) d\mathbf{A}$$

onde V_r é a velocidade relativa do fluido em relação a fronteira, V_r = V_f-V_b

 A variação da propriedade <u>B do sistema</u> é igual a variação de <u>B no V.C.</u> mais o fluxo líquido de <u>B que cruza a S.C.</u>

Forma Integral das Equações de Transporte

 O TTR permite escrever as Equações de Transporte a partir do conceito de <u>V</u>olume de <u>C</u>ontrole:

$$\frac{d}{dt} \int_{VC} \beta \rho d \nabla + \int_{SC} \beta \rho \left(\vec{n} \cdot \vec{V}_r \right) dA = \int_{SC} J \cdot dA + \int_{VC} f \cdot d \nabla$$
Source S

	β	Source
	(B/M)	
Massa	1	0
Movimento	V	$ \int \mathbf{T} \cdot \mathbf{n} d\mathbf{A} + \int \rho \vec{\mathbf{g}} d \nabla \\ \mathbf{S} \cdot \mathbf{C} \qquad \mathbf{V} \cdot \mathbf{C} $
1ª Lei	e	$-\int_{SC} \vec{q}_{k}'' \cdot \vec{n} dA + \int_{SC} \vec{n} \cdot (\mathbf{T} \cdot \vec{V}) dA + \int_{VC} q''' \cdot dV$
2ª Lei	S	$-\int_{SC} \left(\frac{\vec{q}_k''}{T}\right) \cdot \vec{n} dA + \int_{VC} \left(\frac{q'''}{T}\right) \cdot d \forall + Ps$

J e f são fontes genéricos associados a SC e ao VC

Notas Finais da Parte I ...

- Note que a formulação integral das Equações de Transporte contêm termos envolvendo integrais na Superfície de Controle e também no Volume de Controle.
- A estratégia para se obter uma formulação diferencial começa transformando todos as integrais de superfície em volume,
- Para isto vamos introduzir o <u>Teorema de Gauss</u>

Parte II

Formulação Diferencial das Equações de Transporte

Teorema de Gauss

- O Teorema de Gauss transforma a avaliação de uma integral de superfície em integral de volume.
- Ele aplica-se a grandezas escalares, vetoriais e tensorias:

$$\int_{SC} (\vec{n} \cdot \phi) \cdot dA = \int_{VC} (\nabla \phi) \cdot d\nabla
\int_{SC} (\vec{n} \times \vec{V}) \cdot dA = \int_{VC} (\nabla \times \vec{V}) \cdot d\nabla
\int_{SC} (\vec{n} \cdot \mathbf{T}) \cdot dA = \int_{VC} (\nabla \cdot \mathbf{T}) \cdot d\nabla$$

 ∇ é o operador nabla, ∇ f é o gradiente de um escalar (vetor); ∇ xV é o rotacional de um vetor (vetor) e ∇ . \mathbf{T} é o divergente de um tensor

Aplicação do Teorema de Gauss

 Aplicando o Teorema de Gauss à Equação de Transporte vamos transformar os termos de superfície em volume:

$$\frac{\mathbf{d}}{\mathbf{dt}} \int_{\mathbf{VC}} \beta \rho \mathbf{d} \forall + \int_{\mathbf{SC}} \beta \rho \left(\vec{\mathbf{n}} \cdot \vec{\mathbf{V}}_{\mathbf{r}} \right) \mathbf{dA} = \underbrace{\int_{\mathbf{SC}} \mathbf{J} \cdot \mathbf{dA} + \int_{\mathbf{VC}} \mathbf{f} \cdot \mathbf{d} \forall}_{\mathbf{Source S}}$$

↓ Teorema de Gauss ↓

$$\int_{VC} \left[\frac{d(\beta \rho)}{dt} + \nabla \cdot \left(\rho \vec{V} \cdot \beta \right) - \nabla \cdot J - f \right] d \forall = 0$$

A transformação é válida para V.C. não deformáveis, isto é. seu volume não varia com o tempo.

Forma Diferencial

$$\int_{\mathbf{VC}} \left[\frac{\partial (\beta \rho)}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{V}} \cdot \beta) - \nabla \cdot \mathbf{J} - \mathbf{f} \right] d \forall = 0$$

 Como representação Integral acima o tamanho do VC é arbitrário, para a identidade ser válida para qualquer volume é necessário que seu argumento seja nulo!

$$\frac{\partial(\beta\rho)}{\partial t} + \underbrace{\nabla \cdot (\rho \vec{\mathbf{V}} \cdot \beta)}_{\text{convectivo}} = \underbrace{\nabla \cdot \mathbf{J}}_{\text{fonte de Superficie}} + \underbrace{\mathbf{f}}_{\text{solume}}$$

Equação Diferencial da Massa

• A equação da Massa é obtida fazendo-se β =1 e J = f = 0,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{V}}) = \mathbf{0}$$

 Note que para fluidos incompressíveis, isto é, r constante, ela se reduz para:

$$\nabla \cdot \vec{\mathbf{V}} = \mathbf{0}$$

Equação Diferencial da Q. Movimento

• A equação da Q. Movimento é obtida fazendo-se β =V, J = T e f = ρ g,

$$\frac{\partial \left(\rho \vec{\mathbf{V}} \right)}{\partial t} + \nabla \cdot \left(\rho \vec{\mathbf{V}} \vec{\mathbf{V}} \right) = \nabla \cdot \mathbf{T} + \rho \vec{\mathbf{g}}$$

- A Equação da Q. Movimento é vetorial, possui 3 componentes,
- Todos os termos possuem unidades de Força/Volume (N/m³)
- O termo ρVV é um produto diádico, possui natureza tensorial e representa o fluxo de Q. movimento que cruza a S.C.

Equação da Diferencial da Energia 'e'

A equação da Energia é obtida fazendo-se β = e,
 J = q_k + T.V e f = q''';

$$\frac{\partial \left(\rho e\right)}{\partial t} + \nabla \cdot \left(\rho \vec{V} e\right) = -\nabla \cdot \vec{q}_{k}'' \, + \nabla \cdot \left(\textbf{T} \cdot \vec{V}\right) + q'''$$

- O lado esquerda representa o transporte da energia.
- O lado direita representa os termos de calor e trabalho (1a lei) e também um fonte de energia volumétrico

Equação Diferencial da 2ª Lei

• A 2ª Lei é obtida fazendo-se β = s, J = q_k/T e f = q'''/T,

$$\frac{\partial(\rho s)}{\partial t} + \nabla \cdot (\rho \vec{V} s) = -\nabla \cdot \frac{\vec{q}_k''}{T} + \frac{q'''}{T} + Ps$$

- O primeiro e segundo termo referem-se a produção ou destruição de s devido a transferência de calor na fronteira e devido a geração de energia internamente ao volume.
- O último termo refere-se a produção de entropia devido as irreversibilidades do sistema.

Forma Conservativa e Não-Conservativa

$$\frac{\partial(\beta\rho)}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{V}} \cdot \beta) = \nabla \cdot \mathbf{J} + \mathbf{f}$$

 A equação de transporte acima está na sua forma <u>Conservativa</u>. Os termos transiente e convectivos podem ser desdobrados :

$$\beta \left[\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{\mathbf{V}} \right) \right] + \rho \frac{\partial \beta}{\partial t} + \rho \vec{\mathbf{V}} \cdot \nabla \beta = \nabla \cdot \mathbf{J} + \mathbf{f}$$

 Nota-se que a forma Conservativa mantinha implicitamente a equação da massa. Após as simplificações chega-se a forma Não-Conservativa

$$\rho \frac{\partial \beta}{\partial \mathbf{f}} + \rho \vec{\mathbf{V}} \cdot \nabla \beta = \nabla \cdot \mathbf{J} + \mathbf{f}$$

Derivada Substantiva ou Total

$$\rho \left(\frac{\partial \beta}{\partial t} + \vec{\mathbf{V}} \cdot \nabla \beta \right)$$

- Em cinemática o termo acima tem um significado especial.
- Ele coincide com a taxa de variação de uma propriedade seguindo uma partícula, isto é, a partir de um referencial Lagrangeano.

$$\rho \frac{\mathbf{D}\beta}{\mathbf{D}t} = \rho \left(\frac{\partial \beta}{\partial t} + \vec{\mathbf{V}} \cdot \nabla \beta \right)$$

Equação Diferencial da Massa

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{\mathbf{V}} \right) = \mathbf{0}$$

 Desmembrando o segundo termo da equação vamos encontrar:

$$\underbrace{\frac{\partial \rho}{\partial t} + \vec{\mathbf{V}} \nabla \rho + \rho \nabla \cdot \vec{\mathbf{V}} = \mathbf{0} \quad ou \quad \frac{\mathbf{D} \rho}{\mathbf{D} t} + \rho \nabla \cdot \vec{\mathbf{V}} = \mathbf{0}}_{\mathbf{D} \rho / \mathbf{D} t}$$

• Para regime permanente e um fluido incompressível, a sua densidade não varia ao longo de uma linha de corrente, logo $D\rho/dt = 0$ portanto: $\nabla \cdot \vec{V} = 0$

Veia discussão sobre escoamento estratificado no material do curso

Equação Diferencial da Q. Movimento Forma Não-Conservativa

$$\frac{\partial \left(\rho \vec{V} \right)}{\partial t} + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) = \nabla \cdot \textbf{T} + \rho \vec{g}$$

1ª e 2ª Leis Forma Não-Conservativa

 De maneira similar a equação da massa e Q. de movimento, os termos transiente e convectivos podem ser desmembrados, a equação da massa eliminada e gerando a forma não conservativa da 1ª e 2ª leis:

$$\rho \frac{\mathbf{De}}{\mathbf{Dt}} = -\nabla \cdot \vec{\mathbf{q}}_{\mathbf{k}}'' + \nabla \cdot \left(\mathbf{T} \cdot \vec{\mathbf{V}}\right) + \mathbf{q}'''$$

$$\rho \frac{\mathbf{Ds}}{\mathbf{Dt}} = -\nabla \cdot \frac{\mathbf{\vec{q}_k''}}{\mathbf{T}} + \frac{\mathbf{q'''}}{\mathbf{T}} + \mathbf{Ps}$$

Notas Finais da Parte II

 As equações de transporte, especificamente a Quantidade de Movimento, Energia e 2a Lei estão expressas em função do campo de tensões T.

- Não é possível resolvê-las nesta forma porque não se conhece como o campo de tensão se comporta com o campo de velocidades.
- É necessário estabelecer as equações constitutivas para o fluido onde será modelado como a tensão varia com o campo de velocidades, nosso próximo tópico.

Parte III

Equações Constitutivas

Introdução

- Por equação constitutiva entende-se 'modelos' que expressam uma variável em função de outra.
- Por exemplo, a tensão em função da taxa de deformação do fluido.
- Estes 'modelos' não são leis físicas mas podem representar sob condições estabelecidas o comportamento físico do fluido.
- Nesta seção serão desenvolvidas equações constitutivas para a
 - Tensão T no fluido ,
 - Taxa de Calor por condução no fluido, q_k.
- Das duas equações a mais envolvente é a equação constitutiva para tensão, vamos começar por ela.

Sobre a Natureza da Tensão T

- As tensões que agem no fluido podem ser Normais ou Cisalhantes;
- Além disto, no estado estático (sem movimento relativo) só agem tensões normais enquanto que para fluido em movimento surgem tensões normais e cisalhantes devido ao atrito entre as camadas de fluido.
- A tensão T é divida em duas partes, uma devido a pressão P (forças normais) e outra denominada por desvio da tensão, T'

$$T = -P + T'$$

A Pressão

 A pressão é um tensor isotrópico, isto é, ela não depende da orientação, seus elementos da diagonal são iguais e fora da diagonal são nulos, por isto o tensor pode ser representado por um único escalar:

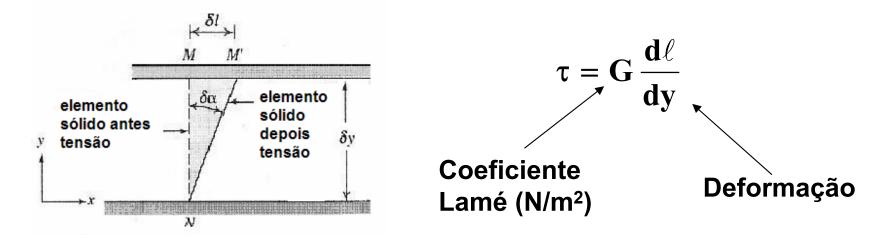
$$\mathbf{P} = \begin{bmatrix} P & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{bmatrix}$$

Propriedades do Tensor Desvio das Tensões, **T**'

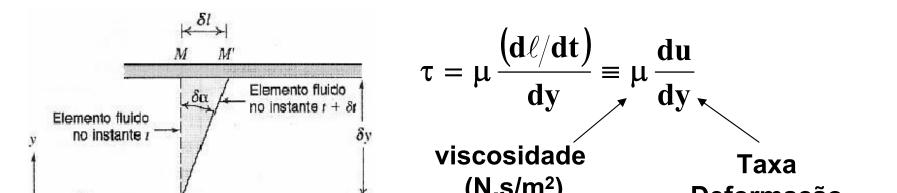
- O tensor desvio das tensões existe somente se houver movimento relativo entre as partículas de fluido.
- Ele possui tensões normais e cisalhantes,
- <u>Ele é simétrico</u>, isto é, os elementos fora de sua diagonal são idênticos, T'ij = T'ji

Similaridades Sólido - Fluido

 Uma tensão aplicada a um corpo sólido causa uma deformação, lei de R. Hooke (1635-1703)

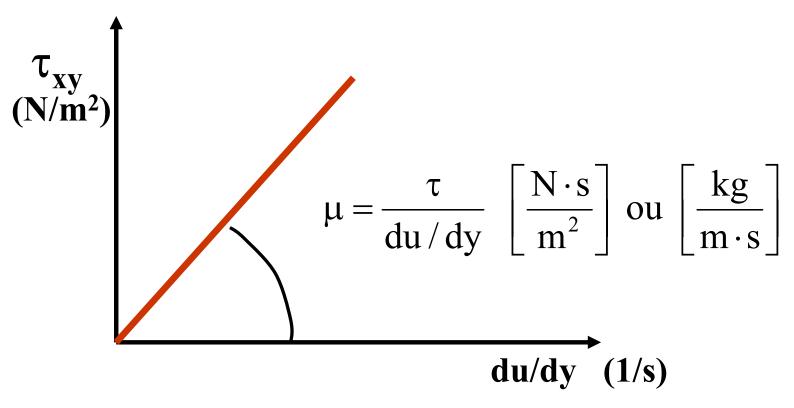


 Fluido se deforma continuamente quando sujeito a uma tensão. Newton propôs, por similaridade, que a tensão é proporcional a taxa de deformação



Viscosidade Dinamica (Absoluta)

 Fluidos <u>Newtonianos</u> (água, todos os gases e maioria dos líquidos) são aqueles que apresentam uma relação linear entre a tensão e a taxa de deformação.



 A viscosidade μ é uma propriedade do fluido e tem natureza escalar.

Extensão para Escoamentos 3D

A lei de Newton pode ser
 estendida para escoamentos
 3D a partir do conhecimento
 da taxa de deformação

Tensor Deformação, D_{ii}

✓ Em notação indicial, o tensor deformação, D_{ii}, é definido por

$$\mathbf{D} = \mathbf{grad}\vec{\mathbf{V}}$$
 ou $\mathbf{D} = \nabla\vec{\mathbf{V}}$

Operação com Tensores

✓ Qualquer tensor pode ser decomposto em uma parte simétrica e outra anti-simétrica:

$$\mathbf{D_{i,j}} \equiv \frac{1}{2} \left(\mathbf{D_{i,j}} + \mathbf{D_{j,i}} \right) + \underbrace{\frac{1}{2} \left(\mathbf{D_{i,j}} - \mathbf{D_{j,i}} \right)}_{\text{Tensor Simétrico}} + \underbrace{\frac{1}{2} \left(\mathbf{D_{i,j}} - \mathbf{D_{j,i}} \right)}_{\text{Tensor Anti-Simétrico}}$$

✓ Como T' é um tensor simétrico ele é proporcional a parte simétrica do tensor Deformação (paralelo a lei de Newton)

Decomposição do Tensor Deformação

$$\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) & \frac{\partial w}{\partial z} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} \right) & 0 & \frac{1}{2} \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial z} \right) \\ \frac{1}{2} \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) & 0 \end{bmatrix}$$

TENSOR SIMÉTRICO

TENSOR ANTI-SIMÉTRICO

- 1. A diagonal do tensor simétrico está associada a dilatação linear do elemento
- 2. Os elementos fora da diagonal do tensor simétrico estão associados a deformação angular
- 3. Os elementos do tensor anti-simétrico estão associados a rotação do elemento fluido.

O Tensor, S_{ij}

- O tensor S é a parte simétrica do tensor deformação D.
- Ele existe devido ao movimento relativo do fluido que causa deformações normais e angulares ao elemento de fluido.

$$\mathbf{S} = \frac{1}{2} \left(\nabla \mathbf{V} + \nabla \mathbf{V}^{\mathrm{T}} \right)$$

para Fluido Newtoniano

Para fluidos <u>incompressíveis</u> (ρ constante)

$$T = -P I + 2\mu S$$

Para fluidos compressíveis

$$\mathbf{T} = -\mathbf{P}\mathbf{I} - \underbrace{\frac{2\mu}{3}\nabla \cdot \vec{\mathbf{V}}\mathbf{I} + 2\mu \mathbf{S}}_{\mathbf{T}'} \quad \text{ou}$$

$$\mathbf{T} = -\left[\mathbf{P} + \frac{2\mu}{3}\nabla \cdot \vec{\mathbf{V}}\right]\mathbf{I} + 2\mu \,\mathbf{S}$$

Onde I é o tensor identidade

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Porque Tensão e Deformação são Linearmente Dependentes?

- A relação τ = µdu/dy é um modelo! Portanto não há razão alguma que na natureza os fluidos devam seguir este modelo.
- Entretanto, os gases seguem este modelo;
- Água, óleos em geral e uma grande maioria de líquidos podem ser bem representados por este modelo;
- Mas há líquidos que não são representados: tintas, fluidos biológicos, emulsões em geral.

Fluidos Newtonianos Generalizados

 Eles descrevem fluidos com comportamento não-linear tensão x deformação mas não reproduzem efeitos de:

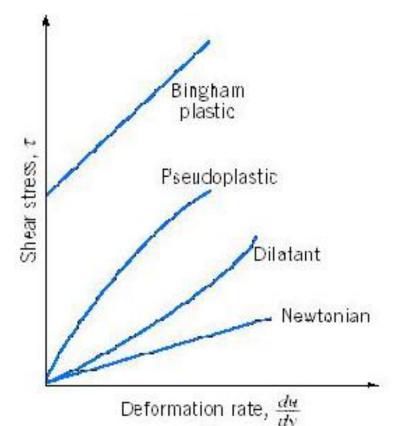
- tensão normal,
- efeitos dependentes do tempo,
- ou efeitos elásticos

Fluidos Newtonianos Generalizados

 A relação 'mais' geral entre tensão e deformação:

$$\tau_{yx} = k \left(\frac{du}{dy}\right)^n$$

- n índice de comportamento do escoamento.
- k índice de consistência.



n = 1, fluido newtoniano, k = μ

n > 1, fluido dilatante

n < 1 fluido pseudo plástico

Viscosidade Aparente, η

- É uma conveniência matemática para ajustar a forma de modelos lineares.
- Desmembrando a tensão em um termo linear e outro com potência (n-1):

$$au_{yx} = k \left| \frac{du}{dy} \right|^{n-1} \frac{du}{dy} = \eta \frac{du}{dy}$$

- A viscosidade aparente é η = k(du/dy)^(n-1).
- Note que ela n\u00e3o \u00e9 mais propriedade do fluido mas depende do campo de velocidades.
- Ela pode variar ponto a ponto dentro do campo do escoamento

para Fluido Newtoniano Generalizado

Para fluidos <u>incompressíveis</u> (ρ constante)

$$T = -P I + 2\eta(S) S$$

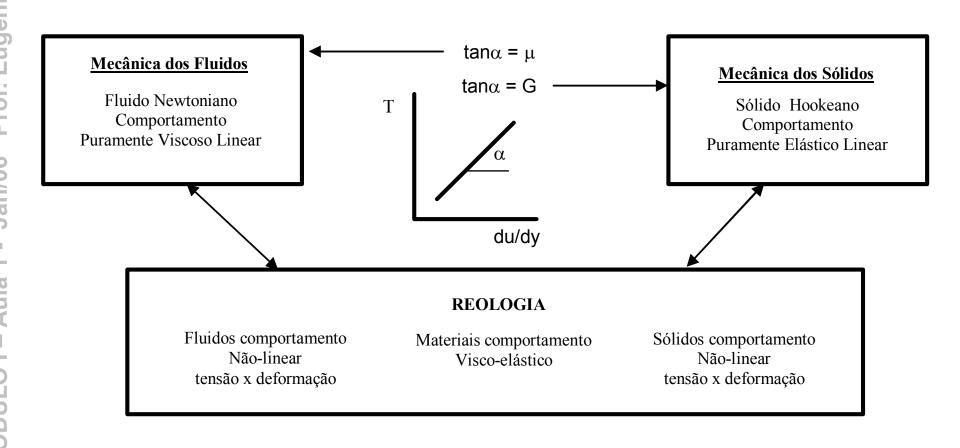
 onde S é um escalar com dimensão de (1/s)² e é definido pelo produto escalar do tensor S

$$S = \sqrt{\frac{1}{2}S : S}$$

e η é uma função tipo lei de potência de S,

$$\eta = kS^{(n-1)}$$

Campo da Reologia



Difusão de Calor, Lei de Fourier

 A condução ou difusão de calor tem natureza vetorial e é dada pela Lei de Fourier:

$$\overrightarrow{\mathbf{q}_{\mathbf{k}}''} = -\mathbf{k}\nabla\mathbf{T} \quad \left| \frac{\mathbf{W}}{\mathbf{m}^2} \right|$$

 onde k é o coeficiente de condução ou difusão térmica, W/mºC.

Dilusão de Massa, Lei de Fick

 O fluxo de massa por difusão de uma espécie química em outra é proporcional ao gradiente de concentração mássica da espécie :

$$\overrightarrow{\mathbf{m}_{j}''} = -\rho \mathbf{D}_{j} \nabla \mathbf{w}_{j} \qquad \left[\frac{\mathbf{kg}}{\mathbf{s.m}^{2}} \right]$$

- onde m" é o <u>vetor fluxo de massa</u> (kg/(s.m²);
- ρ é a densidade da mistura;
- D_j é o coef. Difusão de massa, (m²/s);
- e w_j é a fração mássica ou concentração do componente j, w_i = m_i/M.

Notas Finais da Parte III

 As equações constitutivas para tensão e calor permitem que as equações de transporte de Q. Movimento e Energia sejam escritas em termos das variáveis básicas: Velocidades, Pressão e Temperatura.

 Na Parte IV desta aula vamos retornar às Equações de Transporte para fazermos esta substituição e chegarmos a sua forma final!

Parte IV

Retorno às Equações Diferencias de Transporte

Equação Diferencial da Massa

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{\mathbf{V}} \right) = \mathbf{0}$$

ou
$$\underbrace{\frac{\partial \rho}{\partial t} + \vec{\mathbf{V}} \nabla \rho}_{\mathbf{D} \rho / \mathbf{D} t} + \rho \nabla \cdot \vec{\mathbf{V}} = \mathbf{0}$$

 Note que para fluidos incompressíveis, isto é, ρ constante, ela se reduz para:

$$\nabla \cdot \vec{\mathbf{V}} = \mathbf{0}$$

Equação de Navier Stokes

A Eq. Transporte de Q. Movimento é:

$$\frac{\partial \left(\rho \vec{\mathbf{V}} \right)}{\partial t} + \nabla \cdot \left(\rho \vec{\mathbf{V}} \vec{\mathbf{V}} \right) = \nabla \cdot \mathbf{T} + \rho \vec{\mathbf{g}}$$

 Substituindo a Eq. constitutiva da Tensão para fluido Newtoniano vamos chegar às Equações de Navier-Stokes (NS):

$$\frac{\partial \left(\rho \vec{V} \right)}{\partial t} + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) = -\nabla P + \nabla \cdot \left[-\frac{2}{3} \, \mu \nabla \cdot \vec{V} + 2 \mu \, \bm{S} \right] + \rho \vec{g}$$

 A Eq. acima é válida para escoamentos compressíveis, e viscosidade variável. S é definido por:

$$\mathbf{S} = \frac{1}{2} \left(\nabla \vec{\mathbf{V}} + \nabla \vec{\mathbf{V}}^{\mathrm{T}} \right)$$

Equação de Navier Stokes Compressível

Para <u>μ constante</u> e considerando a identidade:

$$\nabla \cdot 2 \,\mathbf{S} \equiv \nabla \cdot \left[\nabla \vec{\mathbf{V}} + \nabla \vec{\mathbf{V}}^{\mathrm{T}} \right] \equiv \nabla^2 \vec{\mathbf{V}} + \nabla \left[\nabla \cdot \vec{\mathbf{V}} \right]$$

 vamos chegar às Equações de Navier-Stokes (NS) para um <u>fluido compressível com μ constante</u>:

$$\frac{\partial \left(\! \rho \vec{V}\right)}{\partial t} + \nabla \cdot \left(\! \rho \vec{V} \vec{V}\right) = -\nabla P + \frac{1}{3} \, \mu \nabla \! \left[\! \nabla \cdot \vec{V}\right] \! + \mu \nabla^2 \vec{V} + \rho \vec{g}$$

Equação Navier Stokes Incompressível

Para ρ e μ constantes temos que, ∇.V =0, logo:

$$\frac{\partial \left(\! \rho \vec{V}\right)}{\partial t} + \nabla \cdot \left(\! \rho \vec{V} \vec{V}\right) = -\nabla P + \mu \nabla^2 \vec{V} + \rho \vec{g}$$

 Esta é a forma mais popular das Equações de Navier Stokes: <u>fluido incompressível e com</u> <u>viscosidade constante</u>.

Equação de Transporte de 'e'

 A equação de transporte da Energia 'e', na sua forma não-conservativa é:

$$\rho \frac{\mathbf{De}}{\mathbf{Dt}} = -\nabla \cdot \mathbf{q}_{\mathbf{k}}'' + \nabla \cdot \left(\mathbf{T} \cdot \vec{\mathbf{V}}\right) + \mathbf{q}'''$$

 Neste estágio é conveniente substituir T = -P+T' e expandir os termos:

T':∇**V** é o produto 'escalar' entre o tensor desvio da tensão e o tensor deformação do fluido, seu resultado é um escalar. Veja definições no material impresso do curso.

Equação de Transporte de 'e'

- Para se chegar a forma final da Equação da Energia é necessário definir:
 - 1. As formas de energia que 'e' representa;
 - 2. A difusão do calor, q_k
 - 3. O tensor das tensões no fluido e seus produtos
- Estas tarefas serão feitas na sequência.

Modos de Energia 'e'

 Vamos considerar três modos de energia: interna, cinética e potencial:

$$\mathbf{e} = \mathbf{\hat{u}} + \frac{1}{2} \mathbf{\vec{V}} \cdot \mathbf{\vec{V}} - \mathbf{\vec{g}} \cdot \mathbf{\vec{r}}$$

- onde û é a energia interna, g a aceleração da gravidade e r o vetor posição
- A derivada total em termos das parcelas de 'e' fica sendo:

$$\rho \frac{\mathbf{De}}{\mathbf{Dt}} = \rho \frac{\mathbf{D\hat{u}}}{\mathbf{Dt}} + \rho \vec{\mathbf{V}} \cdot \frac{\mathbf{D\vec{V}}}{\mathbf{Dt}} - \rho \vec{\mathbf{g}} \cdot \vec{\mathbf{V}}$$

Equação de Transporte da Energia Cinética, K

 Multiplicando-se ambos os lados da Eq. NS por V vamos encontrar:

$$\rho \vec{V} \cdot \frac{D\vec{V}}{Dt} = -\vec{V} \cdot \nabla P + \vec{V} \cdot \nabla \cdot \left(\frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \, \textbf{S}\right) + \rho \vec{V} \cdot \vec{g}$$

A energia cinética K é:

$$\rho \vec{\mathbf{V}} \cdot \frac{\mathbf{D}}{\mathbf{D}t} \vec{\mathbf{V}} \equiv \rho \frac{\mathbf{D}}{\mathbf{D}t} \left[\frac{1}{2} (\vec{\mathbf{V}} \cdot \vec{\mathbf{V}}) \right] \equiv \rho \frac{\mathbf{D}}{\mathbf{D}t} [\mathbf{K}]$$

• E sua equação de transporte é:

$$\rho \, \frac{D}{Dt} \big[K \big] = - \vec{V} \cdot \nabla P + \vec{V} \cdot \nabla \cdot \left(\frac{2}{3} \, \mu \nabla \cdot \vec{V} + 2 \mu \, \boldsymbol{S} \right) + \rho \vec{V} \cdot \vec{g}$$

Equação de Transporte da Energia Interna, û

 Subtraindo a Equação da Energia Cinética da Equação de 'e' vamos ter:

$$\rho \frac{D\hat{\mathbf{u}}}{Dt} + \rho \vec{\mathbf{V}} \cdot \frac{D\vec{\mathbf{V}}}{Dt} - \rho \vec{\mathbf{V}} \cdot \vec{\mathbf{g}} = -\vec{\mathbf{V}} \cdot \nabla P - P \nabla \cdot \vec{\mathbf{V}} + \vec{\mathbf{V}} \cdot \nabla \cdot \mathbf{T}' + \mathbf{T}' : \nabla \vec{\mathbf{V}} - \nabla \cdot \mathbf{q}_k'' + \mathbf{q}'''$$

$$-\rho \vec{\mathbf{V}} \cdot \frac{D\vec{\mathbf{V}}}{Dt} = +\vec{\mathbf{V}} \cdot \nabla P \qquad -\vec{\mathbf{V}} \cdot \nabla \cdot \mathbf{T}' + \rho \vec{\mathbf{V}} \cdot \vec{\mathbf{g}}$$

$$\rho \frac{D\hat{\mathbf{u}}}{Dt} = -P \nabla \cdot \vec{\mathbf{V}} \qquad +\mathbf{T}' : \nabla \vec{\mathbf{V}} - \nabla \cdot \mathbf{q}_k'' + \mathbf{q}'''$$

$$\rho \frac{\mathbf{D} \hat{\mathbf{u}}}{\mathbf{D} t} = - \nabla \cdot \mathbf{q}_k'' + \mathbf{T}' : \nabla \vec{\mathbf{V}} - \mathbf{P} \nabla \cdot \vec{\mathbf{V}} + \mathbf{q}'''$$

Equação de Transporte da Energia Interna, û

 Substituindo as equações constitutivas para o tensor desvio da tensão e da condução vamos ter:

$$\rho \frac{\mathbf{D}\hat{\mathbf{u}}}{\mathbf{D}t} = \nabla \cdot \mathbf{k}\nabla \mathbf{T} - \mathbf{P}\nabla \cdot \vec{\mathbf{V}} + \mu \phi + \mathbf{q'''}$$

- o termo -P∇.V está associado ao trabalho de compressão para fluidos compressíveis;
- φ é a função dissipação, sempre positiva:

$$\mathbf{T}' : \nabla \vec{\mathbf{V}} \equiv \mu \phi \equiv \mu \left[-\frac{2}{3} \left(\nabla \cdot \vec{\mathbf{V}} \right)^2 + 2(\mathbf{S} : \mathbf{S}) \right] \geq 0$$

 Os dois outros termos referem-se a calor por condução e a geração de energia interna.

a função dissipação para coordenadas cartesianas, veja mais detalhes na brochura 'Forma Dif. Eq. Transporte'.

$$\phi = -\frac{2}{3} \left(\nabla \cdot \vec{V} \right)^2 + 2 \mu \left[\left(\frac{\partial U}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 + \left(\frac{\partial W}{\partial z} \right)^2 \right] + \left[\left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \right)^2 \right]$$

Equação de Transporte da Energia Interna, û

 Substituindo as equações constitutivas para o tensor desvio da tensão e da condução vamos ter:

$$\rho \frac{\mathbf{D}\hat{\mathbf{u}}}{\mathbf{D}t} = \nabla \cdot \mathbf{k}\nabla \mathbf{T} - \mathbf{P}\nabla \cdot \vec{\mathbf{V}} + \mu \phi + \mathbf{q'''}$$

- Dû/Dt é o transporte de energia interna;
- ∇k∇T é fluxo calor líquido por condução na S.C.;
- -P∇.V é trabalho de compressão, fluidos compr.;
- φ é a função dissipação, converte trabalho de deformação em energia interna (veja próx slide);
- q" representa geração volumétrica de energia dentro do volume (reação química, radiação outras fontes)

A Função Dissipação, ϕ

- O trabalho realizado pelas tensões para 'deformar' o fluido converte 'energia mecânica' do escoamento em 'energia térmica'.
- O nome dissipação sugere que em mecânica 'dissipada' em térmica, portanto é um termo que introduz irreversibilidades no escoamento.
- Para um fluido Newtoniano ela é definida:

$$\mathbf{T}' : \nabla \vec{\mathbf{V}} \equiv \mu \phi \equiv \mu \left[-\frac{2}{3} \left(\nabla \cdot \vec{\mathbf{V}} \right)^2 + 2(\mathbf{S} : \mathbf{S}) \right] \geq 0$$

ou em notação indicial;

$$\phi \equiv \left| -\frac{2}{3} \left(\frac{\partial V_i}{\partial x_i} \right)^2 + \frac{1}{2} \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right)^2 \right| \ge 0$$

• φ é a função dissipação, sempre positiva para atender 2ª lei.

a função dissipação para coordenadas cartesianas, veja mais detalhes na brochura 'Forma Dif. Eq. Transporte'.

$$\phi = -\frac{2}{3} \left(\nabla \cdot \vec{V} \right)^2 + 2 \left[\left(\frac{\partial U}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 + \left(\frac{\partial W}{\partial z} \right)^2 \right] + \left[\left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \right)^2 \right]$$

 O termo do trabalho de pressão pode ser re-escrito em função da equação da massa:

$$-\mathbf{P}\nabla \cdot \vec{\mathbf{V}} = -\mathbf{P}\left(\frac{1}{\rho}\frac{\mathbf{D}\rho}{\mathbf{D}t}\right) \equiv \rho \frac{\mathbf{D}}{\mathbf{D}t}\left(\frac{\mathbf{P}}{\rho}\right) - \frac{\mathbf{D}\mathbf{P}}{\mathbf{D}t}$$

 Substituindo a definição: h = û+P/ρ na equação de û, chega-se a forma não-conservativa da Equação de Transporte da Entalpia:

$$\rho \frac{\mathbf{Dh}}{\mathbf{Dt}} = \nabla \cdot \mathbf{k} \nabla \mathbf{T} + \frac{\mathbf{DP}}{\mathbf{Dt}} + \mu \phi + \mathbf{q'''}$$

ou a sua forma conservativa:

$$\frac{\partial(\rho \mathbf{h})}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{V}} \mathbf{h}) = \nabla \cdot \mathbf{k} \nabla \mathbf{T} + \frac{\mathbf{DP}}{\mathbf{Dt}} + \mu \phi + \mathbf{q'''}$$

Equação Transporte da Entalpia Total, h₀

 A entalpia específica e a entalpia total de um fluido compressível são definidas por:

$$\mathbf{h} = \hat{\mathbf{u}} + \mathbf{P}/\rho$$
 \mathbf{e} $\mathbf{h_0} = \mathbf{h} + (1/2) \cdot (\mathbf{\vec{V}} \cdot \mathbf{\vec{V}})$

 Somando à equação da entalpia a energia cinética:

$$\rho \frac{Dh}{Dt} = \frac{DP}{Dt} + \mu\phi + \nabla \cdot k\nabla T + +q'''$$

$$\rho \frac{D}{Dt} \left[\frac{1}{2} (\vec{V} \cdot \vec{V}) \right] = -\vec{V} \cdot \nabla P + \vec{V} \cdot \nabla \cdot \left(\frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \, \mathbf{S} \right) + \rho \vec{V} \cdot \vec{g}$$

$$\rho \frac{Dh_0}{Dt} = \frac{\partial P}{\partial t} + \vec{V} \cdot \nabla \cdot \left(\frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \, \mathbf{S} \right) + \mu\phi + \nabla \cdot k\nabla T + q''' + \rho \vec{V} \cdot \vec{g}$$
Termos Viscosos

Equação Transporte da Entalpia Total, h₀

 Em geral a entalpia total é empregada para escoamentos compressíveis onde o termo de trabalho das forças de campo é desprezível, neste caso:

$$\rho \frac{Dh_0}{Dt} = \frac{\partial P}{\partial t} + \vec{\mathbf{V}} \cdot \nabla \cdot \left(\frac{2}{3} \mu \nabla \cdot \vec{\mathbf{V}} + 2\mu \,\mathbf{S}\right) + \mu \phi + \nabla \cdot \mathbf{k} \nabla T + q'''$$
Termos Viscosos

 Para tornar sua representação mais compacta é frequente agrupar os termos viscosos num único operador:

$$\rho \frac{\mathbf{Dh_0}}{\mathbf{Dt}} = \frac{\partial \mathbf{P}}{\partial \mathbf{t}} + \underbrace{\vec{\mathbf{V}} \cdot \nabla \cdot \left(\mathbf{T'} \cdot \vec{\mathbf{V}}\right)}_{Termos \ Viscosos} + \nabla \cdot \mathbf{k} \nabla T + \mathbf{q'''}$$

Equação de Transporte da Temperatura

 A partir da Equação de transporte da Entalpia e da relação termodinâmica para uma substância pura:

$$\mathbf{dh} = \frac{\partial \mathbf{h}}{\partial \mathbf{T}}\Big|_{\mathbf{P}} + \frac{\partial \mathbf{h}}{\partial \mathbf{P}}\Big|_{\mathbf{T}} \equiv \mathbf{C}_{\mathbf{p}}\mathbf{dT} + \frac{(1 - \mathbf{T}\beta)}{\rho}\mathbf{dP}$$

- onde β é o coef expansão volumétrica, $\beta = -\left(\frac{1}{\rho}\right)\frac{\partial \rho}{\partial T}\Big|_{P}$
- Pode-se mostrar que a forma <u>não-conservativa</u> da Equação de Transporte para Temperatura é:

$$\rho C_{P} \frac{DT}{Dt} = \nabla \cdot k \nabla T + \beta T \frac{DP}{Dt} + \mu \phi + q'''$$

e a sua forma conservativa:

$$\mathbf{C_{P}} \frac{\partial (\rho \mathbf{T})}{\partial t} + \mathbf{C_{P}} \nabla \cdot (\rho \mathbf{V} \mathbf{T}) = \nabla \cdot (\mathbf{k} \nabla \mathbf{T}) + \beta \mathbf{T} \frac{\mathbf{DP}}{\mathbf{Dt}} + \mu \phi + \mathbf{q'''}$$

Equação de Transporte da Entropia

A equação de transporte de S é:

$$\rho \frac{\mathbf{Ds}}{\mathbf{Dt}} = \nabla \cdot \frac{\mathbf{k} \nabla \mathbf{T}}{\mathbf{T}} + \frac{\mathbf{q'''}}{\mathbf{T}} + \mathbf{Ps}$$

 o termo de produção, Os, é determinado a partir da relação termodinâmica para uma substância pura:
 dP
 Dh
 DS
 DP

$$dh = Tds + \frac{dP}{\rho} \rightarrow \frac{Dh}{Dt} = T\frac{Ds}{Dt} + \frac{1}{\rho} \cdot \frac{DP}{Dt}$$

 substituindo as eqs. para h e s na relação acima vamos encontrar:

$$\mathbf{P}\mathbf{s} = \frac{\mathbf{k}(\nabla \mathbf{T})^2}{\mathbf{T}^2} + \frac{\mu \phi}{\mathbf{T}} \ge \mathbf{0}$$

 As irreversibilidades estão associadas a uma troca térmica com diferença de temperatura ou ao trabalho viscoso realizado pelo fluido

Notas Finais Parte IV

- Estas são as formas finais de algumas das equações de transporte.
- Há diversas outras que não foram abordadas neste aula, entre elas: transporte de um escalar, transporte de energia cinética e transporte de vorticidade.
- As duas últimas estão na brochura anexa para referência.
- O desafio da próxima aula será simplificar algumas equações e procurar expressá-las numa única Equação Geral de Transporte.

Referências

- [1] White, F.M.; "Viscous Fluid Flow", McGraw Hill (1974)
- [2] Moore, F.K.; "Theory of Laminar Flows", Princeton Un. Press (1964)
- [3] Rosenhead, L.; "Laminar Boundary Layers", Oxford (1963)
- [4] Warsi, Z.U.A., "Fluid Dynamics: Theoretical and Computational Approaches", CRC (1993)
- [5] Panton, R. "Incompressible Flow", John Wiley (1984)
- [6] Tennekes, H. and Lumley, J.L., "A First Course in Turbulence", MIT Press, 1972,
- [7] Reynolds W.C. and Perkins, H.C., "Engineering Thermodynamics", Mc Graw Hill, (1977)
- [8] Hinze, J.O., "Turbulence", McGraw Hill, (1959)
- [9] Townsend, A.A., "The Strucuture of Turbulent Shear Flow", Cambridge Un. Press, 2nd ed., (1976).
- [10] Wilcox, D.C., "Turbulence Modeling for CFD", 2nd ed., DCW Industries, (1998).
- [11] Astarita, G. and Marrucci, G., "Principles of Non-Newtonian Fluid Mechanics", McGraw Hill(1974)

FENÔMENOS DE TRANSPORTE - CHEMTECH MÓDULO I - Aula 1 - Jan/06 Prof. Eugênio

FIM